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Abstract:

In this paper we use high-frequency multivariate data and attempt to model the joint
distribution (dependence structure) of daily exchange rate returns of four major
foreign currencies (USD, EURO, GBP and Swiss-Franc) against Indian rupees
mainly in the copula-GARCH framework. We also compute 1-day, 99% portfolio
Value at Risk (VaR) using Monte Carlo simulation technique for seven multivariate
models, which were used to model the dependence structure of the four exchange
rate returns. We also compare the performances of these multivariate models based
on the goodness of in-sample fit as well as backtesting of VaR results. It is observed
that multivariate normal distribution does not fit well the joint distribution of four
exchange rate returns under consideration, and also number of exceptions raised in
backtesting of VaR estimate are exceptionally high and also unconditional coverage
test (binomial test/ kupiec test) and conditional coverage test (christoffersen test)
suggest that the VaR estimate is inaccurate. In contrast, VaR estimate based on
other six multivariate models produce acceptable VaR estimate. However, among all
these seven models Clayton copula model and multivariate student’s t distribution
after transforming individual exchange rate returns to student’s t distribution (Hull-
White transformation) produce least number of exceptions in back testing of VaR

estimate.
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Estimation of portfolio Value at Risk using Copula

1. Introduction

Recently, the interaction and dependence among the stock markets, exchange rates
and interest rates, both locally and cross border, have become stronger than before,
mainly on account of greater integration of financial markets, financial innovations,
technology innovation which facilitate in massive flow of information among investors
and policy makers. A better understanding of the dependence of asset prices is
important for proper risk measurement which also helps in deriving full benefit of
portfolio diversification by bank/financial analysts. For example, let us assume that
the joint distribution of asset prices is skewed, such that there is higher probability of
dependence in the left tail than in the right tail. Then, if we assume a symmetric joint
distribution to measure the risk (such as value at risk), the assessment will be
incorrect since downside and upside risks are different. Value at Risk (VaR) is widely
used as a measure of risk of an asset or of a portfolio of asset. The 1000% 1-day
ahead VaR (let us say Aq;) is defined as P[r<=Aq:| r.1]= a; where r is the expected
return of the portfolio in day ‘t, r.1 is the observed return of the portfolio in day ‘t-1'.
For example, if there is very little chance, say 5% probability that tomorrow’s
expected losses for a portfolio would be greater than %100, and then %100 is the 1-
day 5% VaR for the portfolio.

In this paper we use high-frequency multivariate data and attempt to model the joint
distribution (dependency structure) of daily returns of four major foreign currencies
(INR-USD, INR-EURO, INR-GBP and INR-CHF) against Indian rupees. Like in many
previous works (as discussed in Patton (2002), Alexander et al (2005)), the modelling
framework we adopt here is mainly a copula-GARCH model. In particular, we use
ARMA-GARCH specification (ARMA for mean specification and GARCH for volatility
modeling) to filter the deterministic terms in the daily return series and then model the
residuals using number of multivariate statistical models viz. (i) Multivariate normal
distribution (ii) Multivariate t-distribution (iii) Converting the individual series so that
transformed variables follows Normal distribution (Hull-White transformation) and
thereafter fitting these variable to a multivariate normal-distribution. (iv)Transforming
the individual series so that transformed variables follows student's t distribution
(Hull-White transformation) and thereafter fitting these variable to a multivariate t-
distribution. (v) Gauss-copula (vi) Student's t-Copula (vii) Clayton-copula. Thereatfter,
we compute VaR using Monte Carlo simulation technique for the portfolio with four
risk factors (INR-USD, INR-EURO, INR-GBP and INR-CHF exchange rates) of equal



weights for each of the seven models of dependency structure as mentioned above.
We also compare the performances of these models based on the goodness of in-
sample fit (log likelihood values of model fit) to the data as well as back testing of

VaR results.

2. Statement of Hypothesis

(a) Daily exchange rate returns of the four major foreign currencies against Indian
rupees do not follow Gaussian normal distribution. Therefore, using multivariate
normal distribution to model the joint distribution of these daily returns is not
appropriate and this may lead to inaccurate estimation of VaR of a portfolio of assets
which depends on these exchange rates (risk factors).

(b) Instead of multivariate normal distribution, copula approach of modeling the
dependence structure of daily exchange rate returns would produce comparatively
better estimation of VaR of a portfolio of assets which depends on these exchange

rates (risk factors).

3. Structure of the paper

The paper is organized as follows. Section 4 gives a short literature review on the
recent applications of copulas in modeling financial series; Section 5 introduces the
modeling dependence structure, where we introduce the copula theory, the copula-
GARCH framework and the estimation procedure. In particular, we elaborate seven
different multivariate model to model the four exchange rate return series, Section 6
introduces the concept of Value at Risk (VaR) and different techniques to the same,
Section 7 describe various methods to compare the performance of models, Section
8 reports estimation results for the seven modeling strategies and makes comparison
between them in terms of overall goodness of fit of data and back testing of VaR

results and Section 9 concludes.

4. Review of literature

Copula is widely used in modeling the joint distributions because it does not require
the assumption of joint normality and allow us to decompose n-dimensional joint
distribution into its ‘n’ marginal distributions and a copula function which glue them
together. Sklar (1959) introduced the term copula. A good introduction to the copula
theory may be found in the books of Joe (1997) and Nelsen (1999). The papers of
Bouye et al.(2000), Embrechts, Lindskog and McNeil (2003) present general
examples of applications of copula in finance. Cherubini and Luciano (2001)

estimated the VaR using the Archimedean family copula and the historical empirical



distribution to estimate the marginal distributions; Meneguzzo and Vecchiato (2002)
used copula for modeling the risk of credit derivatives, Fortin and Kuzmics (2002)
used convex linear combinations of copula for estimating the VaR of a portfolio
consists of FSTE and DAX stock indices, Embrechts, McNeil and Straumann (2002)
and Embrechts, Hoing and Juri (2003) used copula to model extreme value and risk
limits. To model the dependence structure between excess returns of "large cap"
and "small cap" stock indices, Patton (2004) makes use of a group of frequently used
copulas and focuses on the dependence between two stock indices which are more
correlated during the market downturn than they are when in the upturn. The
deviation from normality could lead to an inadequate VaR estimate and the portfolio
could be either riskier than desired or could be needlessly conservative. To measure
this asymmetric dependence, the paper uses exceedence correlation, as suggested
by Longin & Solnik (2001) and Ang & Chen (2002), and demonstrates that rotated
Gumbel copula yields the highest log likelihood (good fit) among all the copula
candidates (including both normal and Student’s t copulas) and the same is chosen
to model the bivariate distribution of two indices. Long Kang (2007) models the joint
distribution of excess returns of four major assets (one year and ten year Treasury
bonds and S&P 500 and Nasdaq indices) by a multidimensional copula approach.
The modeling framework adopted was a copula-GARCH model where GARCH
specification was used to model the marginal distribution of individual assets and
then to link the margins together use n-dimensional copula (gauss, t, hierarchical and
mixed copula). Nelsen (1998), shows that Archimedean family copula can be used to
nest one copula into another copula to form a hierarchical structure. A mixed copula
(Tasfack (2006)) is formed by summing up a group of weighted copulas where each
copula features dependence between one pair of variables and the sum of the
weights is equal to unity. Similar work is also done by Goeij and Marquering (2004)
where they model the conditional covariance between stock and bond markets
returns by a multivariate  GARCH approach. They show strong evidence of
heteroskedasticity and asymmetries in the covariance between stock and bond
market returns. Tasfack (2006) models dependence structure and extreme co-
movements of international equity and bond markets by a regime-switching copula-
GARCH model. In one regime, he uses an n-dimensional normal copula to link the
marginal distributions and in the other he uses a mixed copula of which each copula
component features the dependence structure of a particular pair of variables. The
paper empirically demonstrates that dependence between international assets of the
same type is high in both regimes while the dependence between equity and bond

markets is low even within one country.



5. Modelling dependence structure

To model the dependence structure of the four exchange rates returns, we use two
step procedures. At first the stochastic volatility effects of the individual series are
modelled by generalized autoregressive conditional heteroskedasticity (GARCH)
model (Bollerslev, T, 1986). In particular, we fit univariate ARMA-GARCH models.
Thereafter, model the joint dependence structure of the innovations (n) of the
respective ARMA-GARCH equations. We use seven different models for the joint
dependence structure of the four risk factors (exchange rate returns) i.e. (i)
multivariate normal distribution; (ii) multivariate t-distribution; (iii) converting the
individual series so that transformed variables follows Normal distribution (Hull-White
transformation) and thereafter fitting these variable to a multivariate normal-
distribution; (iv) transforming the individual series so that transformed variables follow
student's t distribution (Hull-White transformation) and thereafter fitting these variable
to a multivariate t-distribution; (v) Gauss-copula; (vi) student’s t-Copula; and (vii)

Clayton-copula.

5.1 Multivariate distribution: Hull-White transformation:

To model the multivariate distribution, an interesting approach is suggested by Hull
and White (1998). If returns are not multivariate normal, they suggested that we can
still apply the variance-covariance approach if we transform our returns to make them
multivariate normal. We then apply the Monte Carlo technique to transformed

returns, and derive the VaR estimates.

Assume there are 'm' different instruments in our portfolio. Let e; be the returns on
asset 'i' in period 't', and let G; be an assumed distribution function for e;. This
function will, in general, be time dependent reflecting factors such as GARCH
volatility and correlation process. We now transform e; into a new variable (f;) using

the transformation:
N T IGI@I)] <ot (1)

Where N is the standard normal distribution function (or we also could have used
student's t distribution). The term in square brackets, Gj(ey), is the zth percentile of
the assumed distribution function G;, and f; is the same percentile of the standard
normal distribution. Hence, equation (1) transforms the return e; into its standard
normal equivalent, f;. We can also invert equation (1) to map the f; back to the

original returns, ei, using the reverse mapping:

eit=G'1i[N(fi,-)] ........................................................................................................... (2)



Equation (1) thus allows us to transform our returns and equation (2) allows us to un-
transform them. The function G; can take any form we like: we can take it to be some
particular heavy-tailed distribution, for instance, or we can take it to be empirical
distribution function drawn from our original data. Next, we assume that our
transformed returns — the f; — are distributed as multivariate normal and we estimate
their mean vector and covariance matrix. Hull and White suggest that we use a
Monte Carlo method to simulate values of the transformed returns fit based on the
estimated mean and variance-covariance parameters. We then use equation (2) to
map our simulated f;; values to their untransformed counterparts, the ey, to give a set
of simulated non-normal returns, and we can estimate the desired risk measures
using a standard method (e.g. a non-parametric method based on the simulated
series). This approach is easy to implement and can be applied to a much wider set
of non-multivariate-normal return distribution. In fact, this is nothing but the gauss-

copula (discussed later).

5.2 Copula

Copulas have become a popular tool in multivariate modelling. A copula is a method
for associating random variables together, irrespective of their marginal distributions.
Copula is a multivariate distribution whose marginal distributions are all uniform
distribution over (0, 1). The main purpose of copula is to separate marginal
distribution from correlation and this is done by transforming each variable so that it
becomes uniformly distributed. For continuous distributions, there is a widely used
technique to do so. Let F denote the cumulative distribution function of the random
variable X, i.e. F(x) = P(X<x). Then the variable U=F(X) is uniformly distributed [Let u
be a number between 0 and 1; then P(U<u) = P(F(X)<u) = P(X< F'(u)) = F(F" (u)) =
u]. Therefore, if we are able to glue together uniform distributions, then that can be

termed as copula.

Let X=(X;, ..., X,) be the random vector with marginal cumulative distribution
functions (C.D.F.) F; .., F, The m-dimensional multivariate C.D.F.,

F(X,....X,) = P[X, < x,....X, <x,] completely determines the dependence structure

of random variables Xj, ..., X,. However, its analytic representation is often too
complex, making practically impossible its estimation and consequently its use in
simulation models. Sklar (1959) first showed that there exists a m -dimensional
copula C such that F (x4 ,...,Xm )=C (F1 (X1 ),...,Fm (Xm ))-

The use of copula function allows us to overcome the issue of estimating the

multivariate C.D.F. by splitting it into two parts:



(a) Determine the margins F;, ..., F,, representing the distribution of each factors;
estimate their parameters by fitting with the available data.
(b) Determine the dependence structure of the random variables Xj, ..., X, by means

of a suitable copula function.

Copulas provide greater flexibility in modelling the multivariate distribution by allowing
us to fit the appropriate marginal to different random variables and then specifying
the appropriate copula function that bind these marginal distributions together. In
contrast, traditional representations of multivariate distributions require that all
random variables have the same marginal distribution. Since a copula can capture
dependence structures regardless of the form of the margins, a copula approach to
modelling related variables is potentially very useful in risk management. These
advantages imply that copulas provide a superior approach to the modelling of
multivariate statistical problems. Example and definition of some of the widely used
copula such as Gauss copula, student’s t-copula, Gumbel copula, Clayton copula are

given in Annex I.

6. Value at Risk (VaR)

In order to compute portfolio VaR, we need to identify basic market rates and prices
(risk factors) that affect the value of the portfolio. It is necessary to identify a limited
number of basic risk factors; otherwise, the complexity of deriving a portfolio level
VaR would be difficult. There are three broad methods to compute VaR i.e. Historical

Simulation, Variance-Covariance (Parametric) and Monte Carlo technique.

6.1 Historical Simulation

Historical simulation (HS) is simple to implement and requires relatively few
assumptions about the statistical distribution of the underlying market factors. HS
involves using historical changes in market rates and prices to construct a distribution
of potential future portfolio profits and losses and then calculating, for example, the
99%VaR as the loss that is exceeded only 1% of the time. The distribution of profit
and losses is constructed by taking the current portfolio and subjecting it to the actual
changes in the market factors experienced during each of the last N days (e.g. 250
days). That is N sets of hypothetical values of market factors are constructed using
their current values and the changes experienced during the last N periods. Using
these hypothetical values of market factors, N hypothetical mark-to-market portfolio
values are computed (hypothetical because the current portfolio was not held on

each of the last N days). Making use of the actual historical changes in risk factors to



compute the hypothetical profits and losses is the important characteristic of

historical simulation.

6.2 Variance-Covariance

In Variance-Covariance method of estimation of VaR, it assumes the returns (X) are
normally distributed. It requires that we estimate first two moments i.e. mean (p) and
standard deviation (o) which completely describe the normal distribution. Therefore,
99% VaR is (W - Z,*0) i.e. u-2.33%0 (where Pr( (X- u )/ 0 < Z4)=.01).

6.3 Monte Carlo Simulation

In the case of Monte Carlo technique samples are drawn repeatedly from the random
processes governing the prices or returns of the financial instruments we are
interested in. For example, if we were interested in estimating a VaR, each simulation
would give us a possible value for our portfolio at the end of our holding period. If we
take enough of these simulations, the simulated distribution of portfolio values will
converge to the portfolio’s unknown ‘true’ distribution, and we can use the simulated
distribution of end-period portfolio values to infer the VaR. The simulation process
involves a number of specific steps. The first step is to select a model for the
stochastic variable(s) of interest. Having chosen our model, we estimate its
parameters — volatilities, correlations etc. We then construct the simulated paths for
the stochastic variables. Each set of ‘random’ numbers then produces a set of
hypothetical terminals price(s) for the instrument(s) in our portfolio. We then repeat
these simulations sufficient times to be confident that the simulated distribution of
portfolio values to be a reliable proxy for it. Once that is done, we can infer the VaR
from this proxy distribution by using quantile / cumulative distribution function/

percentile.

In contrast to Historical Simulation, the Parametric VaR model imposes a strong
theoretical assumption on the underlying properties of data; frequently Normal
Distribution is assumed because it is easily understood and can be defined using
only the first two moments. Other probability distributions may be used, but at a
higher computational cost. However, empirical evidence indicates that asset price
returns, in particular the daily price changes, most of the time does not follow Normal
Distribution. In the presence of excess kurtosis, failure rate increases when the VaR
is estimated by the Gaussian distribution. As a result, multivariate normal distribution

assumption of portfolio is frequently unsatisfactory because large changes occurred



more frequently than what is predicted under the normality assumption and which

lead to underestimation of the portfolio VaR.

Let us assume that the copula C which is a good proxy for the actual multivariate
probability distribution of the risk factors of a portfolio has been selected and we are
interested in the Value-at-Risk of the portfolio. If we have four risk factors (i.e. four
exchange rates) with marginal cumulative distribution function (F4, F2, F3, F4), we
need to generate a set of random variables (X;,X3,X3,X4) from the selected copula
F(C), then ( F1(x1), F2™(x2), F5'(xs), F4+"(x4) ) form one scenario of possible changes
of the risk factor. The Monte Carlo method generates N such scenarios, and
evaluates the change of value of a portfolio under each of these scenarios. One
period VaR with confidence a is computed as the sample a—quantile of the N such

scenarios.

7. Comparison of models

To compare the goodness of in-sample fit and performances of the models, we use
both the log likelihood values and back testing of results (in terms of number
occasion when actual exceed the VaR number). We compute the VaR of the
hypothetical portfolio for 200 days using Monte Carlo technique for these seven
models and observe the number of occasions of exception (i.e. actual is exceeding

the VaR) and some other statistical test as discussed in 7.1.

7.1 Back testing of VaR

7.1.1 Current Regulatory Framework for back testing
According to amendment to 1988 Basle Capital Accord, the capital standards cover

all assets in a bank’s trading account (i.e., assets carried at their current market
value) as well as all foreign exchange and commodity positions wherever located.
According to internal models approach (IMA) the capital charges are based on the
banks own risk measurement models using the standardizing regulatory parameters
of a ten-day holding period (k = 10) and 99% VaR. In other words, market risk capital
charge of a bank is based on its own estimate of the potential loss that would not
exceed with 99% confidence level over the subsequent two week period. Specifically,
a bank’s market risk capital charge for time t+1, MRC,, s shall be set at the higher of

the previous day's VAR, or the average over the 60 business days that is, MRC, t+1=
=
k= VaRmt -1
max [ e ; VaRm(10,1) ]+ SRCtvvvnennennn (3)



where K and SRC,,; are a regulatory multiplication factor and an additional capital
charge for the portfolio's idiosyncratic credit risk, respectively. Under the current
regulatory frame work, K>=3. The regulatory multiplication factor (k) depends on the
number of exceptions (defined as the occasions when ¢4 < VaR, (1,1) ) observed
over the last 250 trading days. To address the low power of the implied, binomial
hypothesis test, the number of such exceptions is divided into three zones. Within the
green zone (four or fewer exceptions), a VaR model is deemed “acceptably
accurate”, and ‘k’ remains at three, the level specified by the Basle Committee.
Within the yellow zone (five through nine exceptions), ‘k’ increases incrementally with
the number of exceptions. Within the red zone (ten or more exceptions), the VaR
model is deemed to be inaccurate, and ‘k’ increases to four. The institution must also

explicitly improve its risk management system.

7.1.2 Alternative Evaluation Methods
7.1.2.1 Evaluation of VaR estimates based on the binomial distribution

As discussed in the previous section (7.1.1) that under the current regulatory
framework, banks will report their one-day VaR estimates to the regulators, who also
verify whether actual portfolio losses exceed these estimates. If we assume that the
VaR estimates of the bank are accurate, such observations can be modelled as
draws from an independent binomial random variable with a probability of occurrence
equal to the specified a % (99 %). As discussed by Kupiec (1995), a variety of tests
are available to examine whether the observed probability of occurrence, also known
as unconditional coverage, equals a, and the method that regulators have chosen is
based on the number of occasions where €. < VaRn: (1,1) in a sample. The

probability of observing x such exceptions in a sample of size T is

Pr(X; a, T) = O O (1=0) T e (4)
Accurate VaR estimates should exhibit the property that their unconditional coverage,
measured by a* = x/T, equals the desired coverage level a. Thus, the relevant null
hypothesis is a*= a, and the appropriate likelihood ratio statistic is

LRu(@) =2 [log (a™ (1 —=a)™) =log( o (1-a) ™) ] coooeeeeeeeee e, (5)
Under the null hypothesis LR.(a) has an asymptotic x*(1) distribution. That is we
reject the null hypothesis at 5% level of significance if the test statistics is greater
than 3.841459.
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7.1.2.2 Conditional Coverage (Christoffersen 1997)

VaR estimate can be considered as an interval estimate, that is, if fuy is the k-step-
ahead (forecasts) return probability distribution then a percentile lower left-hand
interval is the (100- a)% VaR. Forecast performance can be examined over the
sample period with or without reference to the information available at each point in
time. The LRy(a) test (as discussed in 7.1.2.1) is an unconditional test of interval
forecasts. However, in the presence of the stochastic volatility, testing the conditional
accuracy of interval forecasts becomes important. Moreover, LR,.(a) test fails when
the exceptions are clustered in a time dependent fashion. The LR.(a) test proposed
by Christoffersen (1997) is a test of correct conditional coverage. For a given
coverage level a, one-step-ahead interval forecasts are formed using model m and

—
[

are denoted as V(a) =(-~, VaR(a)]r =1 . Based on these forecasts (V.«(a)) and
the observed portfolio returns, the indicator variable |«(a) generated as given below

1if §eay € Vel

o (@) = 80 iF Eoan & Vieel@d (6)

The LR(a) test for correct conditional coverage is formed by combining tests of
correct unconditional coverage and independence, and the relevant test statistic is
LRce(a) = LRye(a) + LRing(a) which is distributed x %(2). Note that the LRi,q(a) statistic
is a likelihood ratio statistic of the null hypothesis of serial independence against the
alternative of first-order Markov dependence. Under this alternative hypothesis, the
likelihood function is Ly = (L =med™ w1 =m) ™= a{i* where the T; is the

number of observations in state j after having been in state i the period earlier

oy = 01 . nd my, = T1f -
e /ﬂur + Tgg) 4 Fu ﬁ-‘ 1g t Ta1)
Under the null hypothesis of independence,y1= 4= T and the relevant likelihood

T m

function is L0 = (L—m ) 7+ (m YT+ . where T=(To:+T11)/T. The test
statistic is formed as LRinq(a)=2[log L — log Lo] which follows X ?(1) asymptotically.

8. Empirical Analysis
In this study, we use daily data on four exchange rates (INR-USD, INR-EURO, INR-

GBP and INR-CHF) series, downloaded from the official source (www.rbi.org.in;

www.federalreserve.gov ). The sample period is January 2000 to November 2010.

The summary statistics is given in Table 1, kernel densities are shown in Fig 1 and
daily returns are shown in Figure 2. Various normality tests (Nortest package in ‘R’
V2.12.0) such as Anderson-Darling normality test, Cramer-von Mises normality test,

Lilliefors (Kolmogorov-Smirnov) normality test, Shapiro-Francia normality test,
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Pearson chi-square normality test suggests that the variables are not

distributed (Annex II).

Table 1: summary statistics of daily returns of exchange rates
INR-CHF | INR-EUR | INR-GBP INR-USD
Mean 0.0002 0.0001 0.0000 0.0000
Median 0.0000 0.0001 0.0001 0.0000
Maximum 0.0433 0.0378 0.0472 0.0394
Minimum -0.0415 -0.0398 -0.0417 -0.0371
Std. Dev. 0.0076 0.0069 0.0067 0.0040
Skewness 0.0527 0.0078 -0.1582 0.1733
Kurtosis 5.0574 5.1841 7.2376 16.9476
Jarque-Bera 484 544 2061 22215
Probability 0.0000 0.0000 0.0000 0.0000
Observations 2739 2739 2739 2739

Figure 1: Kernel densities of daily returns of exchange rates
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Figure 2: Plotted daily returns of the four exchange rates
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88 5° 5883 8 8§3885°58838 83 88 8833885
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8.1 Modelling marginal distributions

Results of the ARMA-GARCH models for the daily returns of INR-USD, INR-EURO,
INR-GBP and INR-CHF exchange rates are given in Annex Ill. The ARMA_GARCH

model for the conditional mean and conditional variance of these four series are as

under:

INR-USD

USD =-3.10357879533e-05 + [MA(1)=-0.0946539736752] ......ccevveviiiiieinanannnn. (7)
GARCH = 2.19530647185e-06 + 0.862185107635*GARCH(-1)

INR-EURO

EUR =0.000120101838983 + [AR(1)=-0.0545592135554] ........ccccviiiiiiiiininni. (8)
GARCH = 7.20273356275e-07 + 0.0517524042758*RESID(-1)"2 +

0.933656466512*GARCH(-1)

INR-SWISS Franc

CHF =0.000115982272748 + [MA(1)=-0.07135] ....cciviiiiiii i, (9)
GARCH = 7.55810434168e-07 + 0.0451261892429*RESID(-1)*2 +
0.94120692432*GARCH(-1)

INR-GBP
GBP = 7.64605751336€-05 + [MA(1)=-0.0617194170291] ...\ eovveeeereerenn. (10)
GARCH =  509605825624e-07 +  0.052704390331*RESID(-1)2  +

0.933170303731*GARCH(-1)

8.2 Modelling dependence structure

To model the dependence structure of the four exchange rates returns, we construct
the joint dependence structure of the innovations (n) of the respective GARCH
equation. We use seven different models for the combined dependence structure of
the four risk factors (exchange rate returns) i.e. (i) multivariate normal distribution; (ii)
multivariate t-distribution; (iii) converting the individual series so that transformed
variables follows Normal distribution (Hull-White transformation) and thereafter fitting
these variable to a multivariate normal-distribution; (iv) transforming the individual
series so that transformed variables follows student's t distribution (Hull-White
transformation) and thereafter fitting these variable to a multivariate t-distribution; (v)
Gauss-copula; (vi) t-Copula; and (vii) Clayton-copula. We have estimated the model

using the QRMIib package in 'R’ version 2.12.0 (http://cran.r-project.org/). The fitted

models are shown in Figure 3.a to 3.x. The 'R’ script used to calibrate and back test
the model is given in Annex IV. Once the model parameters are estimated, we have
used the Monte Carlo simulation technique to calculate the VaR of the portfolio. That
is, we draw a large number of random observations (2500) for each of the four
exchange rates from each of the seven calibrated multivariate models (i) to (vii) as

described above and calculate the average (assuming equal weight of the risk factors

14


http://cran.r-project.org/

in the portfolio). If we sort these averages (2500) for each of the models separately in
descending order 99% VaR would be the 99 percentile of these sorted series. To
assess the performance of VaR of these seven models we performed a backtesting
for last 200 days (10-Dec-2009 to 27-Sep-2010).

Figure 3.a Gauss Copula: INR-USD and INR-EURO Figure 3.b t-Copula: INR-USD and INR-EURO

Figure 3.c Gumble-Copula: INR-USD and INR-EURO Figure 3.d Clayton -Copula: INR-USD and INR-EURO
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Figure 3.g Gumble -Copula: INR-USD and INR-CHF Figure 3.h Clayton -Copula: INR-USD and INR-CHF

Figure 3.i Gauss Copula: INR-USD and INR-GBP Figure 3.j t-Copula: INR-USD and INR-GBP

Figure 3.k Gumble -Copula: INR-USD and INR-GBP Figure 3. Clayton -Copula: INR-USD and INR-GBP
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Figure 3.m Gauss Copula: INR-EURO and INR-CHF  Figure 3.n t-Copula: INR-EURO and INR-CHF

Figure 3.0 Gumble -Copula: INR-EURO and INR-CHF Figure 3.p Clayton -Copula: INR-EURO and INR-CHF

Figure 3.q Gauss Copula: INR-EURO and INR-GBP Figure 3.r t-Copula: INR-EURO and INR-GBP

Figure 3.s Gumble -Copula: INR-EURO and INR-GBP Figure 3.t Clayton -Copula: INR-EURO and INR-GBP
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Figure 3.w Gumble -Copula: INR-CHF and INR-GBP Figure 3.x Clayton -Copula: INR-CHF and INR-GBP
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8.3. Comparison of models
To compare the goodness of fit and performance of the models we use both the log

likelihood values and back testing of results (in terms of number occasion when

actual exceed the VaR number).

8.3.1 Log likelihood

Estimated parameters and log likelihood values (log likelihood values of copula
models are positive and for non-copula models are negative) of all seven models are
given in Annex V. Clayton copula and multivariate ‘t' distribution exhibit best in-

sample fit.

8.3.2 Back testing

For the purpose of back testing, we use the 200 days data and calculate the number
of occurrence of exceptions under each model. Also we compute the Kupiec test and
Christoferson test to check the effectiveness of the model. 99% VaR implies that out
of 200 days two exceptions are acceptable. The back testing result shows that Model
(i) produces 10 exceptions, model (ii), model (iii), model (v) and model (vi) produces
three exceptions each and Model (iv) and model (vii) produces two exceptions each.
However, Kupiec tests and Christoferson test indicates that for model (i) the null
hypothesis is rejected which implies that the VaR estimate using model (i) is not

accurate. For all other models null hypothesis cannot be rejected in both the tests.

9. Conclusion

In this paper, we use high-frequency multivariate data and attempt to model the joint
distribution (dependency structure) of daily returns of four major foreign currencies
against Indian rupees. Like in many previous works, the modelling framework we
adopt here is mainly a copula-GARCH model. In particular, we use ARMA-GARCH
specification to filter the deterministic terms in the daily return series and then model
the residuals using various statistical techniques such as (i) multivariate normal
distribution; (i) multivariate t-distribution; (iii) converting the individual series so that
transformed variables follows Normal distribution (Hull-White transformation) and
thereafter fitting these variable to a multivariate normal-distribution; (iv) transforming
the individual series so that transformed variables follows student's t distribution
(Hull-White transformation) and thereafter fitting these variable to a multivariate t-
distribution; (v) Gauss-copula; (vi) t-Copula; and (vii) Clayton-copula. Thereafter, we
compute portfolio VaR using Monte Carlo simulation technique for the portfolio with
four risk factors (INR-USD, INR-EURO, INR-GBP and INR-CHF exchange rates) of
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equal weights for each of the seven models of dependency structure. We also
compare the performances of these models based on the log likelihood values of
model fit to the data as well as back testing of VaR results. As part of back testing of
VaR results, one-day portfolio VaRs were computed for the 200 days for the
hypothetical portfolio which depends on these four risk factors using Monte Carlo
Simulations technique, for each of the seven models of dependency structure. It is
observed that multivariate normal distribution does not provide a good in-sample fit of
the joint distribution of four exchange rate returns under consideration, and also
number of exceptions raised in backtesting of VaR estimate are exceptionally high
and also unconditional coverage test (binomial test/ kupiec test) and conditional
coverage test (christoffersen test) suggest that the VaR estimate is inaccurate. In
contrast, VaR estimate based on other six models produce acceptable VaR estimate.
However, among these models, Clayton copula model (model vii) and multivariate
student’s t distribution after transforming individual exchange rate returns to student’s
t distribution (Hull-White transformation - model iv) produce least number of

exceptions (2 out of 200 days) in back testing of VaR estimate.
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Annex |

Examples of Copula

Product Copula/ Independence copula

The probability of multiple events, if they are independent, can be specified by
multiplying individual probabilities together. Two random variables R1 and R2 are
independent if and only if the product of their distribution functions F1 and F2 equals
their joint distribution function. Hence the product copula is defined as

C(u1, ..., un) = P(U1<u1, ..., Un<un) = P(U1<u1) P(U2<u2) ... P(Un<un) = u1 u2 . un.

Gaussian copula

If we transform the random variable (X) using CDF to U which is uniformly distributed
and transform them again so that they become normally distributed using the inverse
Normal probability function. The joint distribution of these Normal variables is then
assumed to be multivariate Normal, with a given correlation matrix 3

Writing ®sfor the probability P(Z1<z1, ..., Zn<zn), where the Z.s are multivariate
Normal with correlation matrix 3, we have

C(u1, ..., un) = Os (d'(u1), ..., & '(un)) .

s i _a. ™
oz g expl —%Zu: Z(Z 1},;—2;}
"hE':z‘I:---:zn?: I ' " - d21"'dz”

(EH}HFE(detZ}HE

— — O

When n=2, the bivariate gauss copula as proposed by Lee (1983) takes the form:
Cluy.ug:d)=dg (tI?_l{'ul}.fl?_1 (u,g):rf!) .

f].—l ( ttg ) 1

=1y
z./_x /_1 2m(1 — 62)1/2

—(s? — 20st + 2\
X { 51— 67) dsdt

Where @ is the CDF of the standard normal distribution, and ®g(u4,u,) is the standard
bivariate normal distribution with correlation parameter 6.

Student's t-copula

Similarly, the t copula is the unique copula of X

C(u1, ..., un) = P(U1<u1, ..., Un<un)= T,,5( T, (uy),... T.(un))

with T, denoting the cumulative distribution function of the univariate Student-t
distribution and T,,s denoting the cumulative distribution function of the multivariate
Student-t distribution.
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Gumbel Copula
Bivariate Gumbel Copula is given by the formula

T % '.'.l"f i % i % 1'IE|
Cylu, v) = exp Jl_ [I‘—ln u)? + (—1In e-‘,la] ' }

The parameter 6 may take all values in the interval [1,~). For 6=1 the gumbel copula
becomes product/independent copula. The Gumbel copula interpolates between
independence and perfect dependence and the parameter 6 represents the strength
of dependence. To calibrate Gumbel copula to empirical data sample correlation
coefficient (Kendall's tau p,) is used and the formula is p,= 7- 1/6.

Clayton Copula

Bivariate Clayton Copula is given by the formula

CEl{ul.ug‘j = (u]_H —|—u£H — ”_1;-;;. 0=f =00

As 6 --> 0, Clayton copula becomes independent copula. To calibrate Clayton copula
to empirical data sample correlation coefficient (Kendall’'s tau p;) is used and the
formula is: p,;= 6/( 6+2).

The Student-t copula has positive tail dependence whenever the correlation is
positive. The coefficients of upper and lower tail dependence are equal, by

symmetry. The Clayton copula has positive lower tail dependence (27"°

) but no upper
tail dependence. The Gumbel copula has positive upper tail dependence (2-27" 9),

but no lower tail dependence.

Annex I
p-value of normality test of exchange rate returns

Anderson- Cramer-von | Kolmogorov- | Shapiro- Pearson

Darling Mises Smirnov Francia chi-square
INR-USD <2.2e-16 <2.2e-16 < 2.2e-16 <2.2e-16 <2.2e-16
INR-EUR <2.2e-16 4.043e-10 | 3.366e-10 <2.2e-16 1.845e-08
INR-CHF <2.2e-16 4.635e-10 1.88e-10 <2.2e-16 1.681e-06
INR-GBP <2.2e-16 3.76e-05 1.204e-14 <2.2e-16 4.544e-12

24




Annex Il

Equation 1: GARCH model for INR-CHF daily exchange rate return
Dependent Variable: CHF

Method: ML - ARCH (Marquardt) - Normal distribution

Included observations: 2739 after adjustments

Convergence achieved after 9 iterations

MA Backcast: 12/31/1999

Presample variance: backcast (parameter = 0.7)

GARCH = C(3) + C(4)*"RESID(-1)*2 + C(5)*GARCH(-1)

Variable Coefficient Std. Error z-Statistic  Prob.
C 0.000116 0.000120 0.969923 0.3321
MA(1) -0.071346 0.019630 -3.634583 0.0003

Variance Equation

C 7.56E-07 2.23E-07 3.385439 0.0007
RESID(-1)"2 0.045126 0.006588 6.849306 0.0000
GARCH(-1) 0.941207 0.009017 104.3812 0.0000

R-squared 0.007395 Mean dependentvar 0.000182
Adjusted R-squared 0.007032 S.D. dependentvar 0.007567

S.E. of regression 0.007541 Akaike info criterion  7.038117
Sum squared resid  0.155627 Schwarz criterion 7.027318

Log likelihood 9643.701 Hannan-Quinn criter. 7.034214

F-statistic 5.097607 Durbin-Watson stat 2.032422
Prob(F-statistic) 0.000431
Inverted MA Roots .07

Equation 2: GARCH model for INR-EURO daily exchange rate return
Dependent Variable: EUR

Method: ML - ARCH (Marquardt) - Normal distribution

Date: 12/17/10 Time: 10:35

Sample (adjusted): 1/04/2000 7/01/2010

Included observations: 2738 after adjustments

Convergence achieved after 10 iterations

Presample variance: backcast (parameter = 0.7)

GARCH = C(3) + C(4)*"RESID(-1)*2 + C(5)*GARCH(-1)

Variable Coefficient Std. Error z-Statistic  Prob.
C 0.000120 0.000113 1.064834 0.2870
AR(1) -0.054559 0.019895 -2.742354 0.0061

Variance Equation

C 7.20E-07 1.70E-07 4.228204 0.0000
RESID(-1)"2 0.051752 0.006489 7.975916  0.0000
GARCH(-1) 0.933656 0.008122 114.9531  0.0000
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R-squared 0.003560 Mean dependentvar 0.000117
Adjusted R-squared 0.003196 S.D. dependentvar 0.006943
S.E. of regression 0.006932 Akaike info criterion  7.207689
Sum squared resid  0.131470 Schwarz criterion 7.196887
Log likelihood 9872.326 Hannan-Quinn criter. 7.203786
F-statistic 2443586 Durbin-Watson stat  2.016019
Prob(F-statistic) 0.044661

Inverted AR Roots -.05

Equation 3: GARCH model for INR-GBP daily exchange rate return

Dependent Variable: GBP

Method: ML - ARCH (Marquardt) - Normal distribution
Convergence achieved after 13 iterations

MA Backcast: 12/31/1999

Presample variance: backcast (parameter = 0.7)
GARCH = C(3) + C(4)*"RESID(-1)2 + C(5)*GARCH(-1)

Variable Coefficient Std. Error z-Statistic  Prob.
C 7.65E-05 0.000103 0.739594 0.4595
MA(1) -0.061719 0.019457 -3.172031 0.0015
Variance Equation

C 5.96E-07 1.22E-07 4.881099 0.0000

RESID(-1)"2 0.052704 0.005890 8.948781 0.0000

GARCH(-1) 0.933170 0.007298 127.8618 0.0000

R-squared 0.004188 Mean dependentvar 6.98E-06

Adjusted R-squared 0.003824 S.D. dependentvar 0.006665

S.E. of regression 0.006652 Akaike info criterion  7.368236

Sum squared resid  0.121121 Schwarz criterion 7.357437

Log likelihood 10095.80 Hannan-Quinn criter. 7.364334

F-statistic 2.877372 Durbin-Watson stat  2.007843
Prob(F-statistic) 0.021580

Inverted MA Roots .06
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Equation 4: GARCH model for INR-USD daily exchange rate return

Dependent Variable: USD

Method: ML - ARCH (Marquardt) - Normal distribution
Included observations: 2739 after adjustments
Convergence achieved after 6 iterations

MA Backcast: 12/31/1999

Presample variance: backcast (parameter = 0.7)
GARCH = C(3) + C(4)*GARCH(-1)

Variable Coefficient Std. Error z-Statistic  Prob.
C -3.10E-05 6.94E-05 -0.447228 0.6547
MA(1) -0.094654 0.009674 -9.783973 0.0000

Variance Equation

C 2.20E-06 1.82E-06 1.207169 0.2274
GARCH(-1) 0.862185 0.114189 7.550513 0.0000
R-squared 0.009786 Mean dependentvar 1.40E-05
Adjusted R-squared 0.009424 S.D. dependentvar 0.004019
S.E. of regression 0.004000 Akaike info criterion  8.206186
Sum squared resid  0.043789 Schwarz criterion 8.197547
Log likelihood 11242.37 Hannan-Quinn criter. 8.203064
F-statistic 9.016102 Durbin-Watson stat 2.010962

Prob(F-statistic)

0.000006

Inverted MA Roots

.09
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Annex IV
'R" Script to estimate the parameter of the multivariate distributions, Monte Carlo
simulation for VaR computation and back testing the results ('R' version 2.12.0)

library(QRMIib)

HHHHHEAHAH reading the data file from a .txt file which contains four series of daily returns of
exchange rates and four series of corresponding innovation series (using GARCH filter) ####

exch<-read.table(file="e:\\copula\\exch.txt",header=T)
HHHHHARHERR assigning the daily return series
usd<-exch$usd

chf<-exch$chf

eur<-exch$eur

gbp<-exch$gbp

HHHHHHARAHHAEHH# assigning the innovation i.e. standradised (GARCH) return series
usd1<-exch$usd1

chf1<-exch$chf1

eur1<-exch$eur1

gbp1<-exch$gbp1

HHHHHARHHAAAHE variables and matrices initialisation
i=j=k=0

a<-matrix(0,200,2500)

b<-matrix(0,200,2500)

c<-matrix(0,200,2500)

d<-matrix(0,200,2500)

dd<-matrix(0,200,2500)

rmn1<-matrix(0,2500,1)

rng=matrix(0,200,1)

rtqg=matrix(0,200,1)

rgg=matrix(0,200,1)

rtcq=matrix(0,200,1)

racq=matrix(0,200,1)

rhwtg=matrix(0,200,1)

rhwng=matrix(0,200,1)

#HH#Model calibration and Back testing: using 2500 observations for model calibration and
200 observations for back testing ###

for (i in 1:200)
j=1+i;k=2500+i;
afi,]=usd1[j:k];
b[i,]=eur1[j:k];

cli,]=chf1[j:k];
dd[i,]=gbp1[j:KI;
d=cbind(a[i,],b[i,],c[i,],dd[i,]);

HHHHEAHHAH converting the original series to uniform distribution by way of cumulative
density function

U <- apply(d,2,edf,adjust=1);
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##H# univariate t dist

t1<-fit.st(d[,1])

t2<-fit.st(d[,2])

t3<-fit.st(d[,3])

t4<-fit.st(d[,4])
HHHHHARHHARAHAAHHAH Hull-white transformation - t dist
h1<-ecdf(d[,1])
hw1<-2499/2500*h1(d[,1])
h2<-ecdf(d[,2])
hw2<-2499/2500*h2(d[,2])
h3<-ecdf(d[,3])
hw3<-2499/2500*h3(d[,3])
h4<-ecdf(d[,4])
hw4<-2499/2500*h4(d[,4])
hwt1<-qt(hw1,df=t1$par.est[1])
hwt2<-qt(hw2,df=t2$par.est[1])
hwt3<-qt(hw3,df=t3$par.est[1])
hwt4<-qt(hw4,df=t4$par.est[1])
hwt<-cbind(hwt1,hwt2,hwt3,hwt4)
fhwt<-fit. mst(hwt)
rmhwt<-rmvt(n=1000, sigma = fhwt$Sigma, df = fhwt$nu)
x1<-pt(rmhwt[,1],df=t1$par.est[1])
x2<-pt(rmhwt[,2],df=t2$par.est[1])
x3<-pt(rmhwt[,3],df=t3$par.est[1])
x4<-pt(rmhwt[,4],df=t4$par.est[1])
y1<-quantile(d[,1],x1)
y2<-quantile(d[,2],x2)
y3<-quantile(d[,3],x3)
y4<-quantile(d[,4],x4)
rmhwt1<-y1+y2+y3+y4
rhwtq[i]<-quantile(rmhwt1,.01)

##H# Hull-White transformation —normal distribution
hwn1<-gnorm(hw1)
hwn2<-gnorm(hw2)
hwn3<-gnorm(hw3)
hwn4<-gnorm(hw4)
hwn<-cbind(hwn1,hwn2,hwn3,hwn4)
fhwn<-fit.norm(hwn)
rmhwn<-rmnorm(n=1000, fhwn$Sigma,fhwn$mu)
x5<-pnorm(rmhwn[,1])
x6<-pnorm(rmhwn[,2])
x7<-pnorm(rmhwn[,3])
x8<-pnorm(rmhwnl[,4])
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y5<-quantile(d[,1],x5)

y6<-quantile(d[,2],x6)

y7<-quantile(d[,3],x7)

y8<-quantile(d[,4],x8)

rmhwn1<-y5+y6+y7+y8

rhwnq[i]<-quantile(rmhwn1,.01)

#HHHHHAR###E multivariate normal distribution
fn<-fit.norm(d)

rmn<-rmnorm(1000,fn$Sigma,fn$mu);
rmn1<-rmn[,1]+rmn[,2]+rmn[,3]+rmn[,4]
rnq[i]<-quantile(rmn1,.05)

H#HHHHHARAH# multivariate t distribution

ft<-fit. mst(d)

rmt<-rmvt(n=1000, sigma = ft$Sigma, df = ft$nu)
rmt1<-rmt[,1]+rmt[,2]+rmt[,3]+rmt[,4]
rtq[i]<-quantile(rmt1,.01)

#HHHHAAAHHE multivariate: Gauss-Copula

mod.gauss <- fit.gausscopula(U);

rgc <- rcopula.gauss(1000,d=4,Sigma=mod.gauss$P);
rmgc1<-quantile(a[i,],rgc[,1])+quantile(bli,],rgc[,2])+quantile(c[i,],rgc[,3])+quantile(dd[i,],rgc[,41)
rgq[i]<-quantile(rmgc1,.01)

HHEHEHHHHHE multivariate: t Copula

mod.t <- fit.tcopula(U);

rtc <- rcopula.t(1000,d=4,Sigma=mod.t$P,df=mod.t$nu);
rmtc1<-quantile(a[i,],rtc[,1])+quantile(bli,],rtc[,2])+quantile(c[i,],rtc[,3])+quantile(dd[i,],rtc[,4])
rtcq[i]<-quantile(rmtc1,.01)

H#HHtHHAH# multivariate: Clayton Copula

mod.g<- fit. AC(U,name="clayton");

rac<-rAC("clayton", n=1000, d=4,theta =mod.g$theta);
rmac1<-quantile(a[i,],rac[,1])+quantile(bli,],rac[,2])+quantile(c[i,],rac[,3])+quantile(dd[i,],rac[,4])
racq[i]<-quantile(rmac1,.01)

}

#HHHHAAAHET O plot the kernel densities of the daily exchange rate returns #HHHHEHE
plot(density(usd),main="Kernel density of INR-USD exchange rate")
plot(density(eur),main="Kernel density of INR-EURO exchange rate")
plot(density(usd),main="Kernel density of INR-USD exchange rate")
density(gbp),main="Kernel density of INR-GB.Pound exchange rate")

( (
( (
plot(density(chf),main="Kernel density of INR-CHF (swiss franc) exchange rate")
( (

plot(density(rnorm(2738)),main="Kernel density of a typical standard normal variable")
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1. Estimation of model | (multivariate normal distribution)

A

)
usd chf eur gbp
usd | 1.067
chf 0.356 | 0.987
eur 0.378 | 0.908 | 0.999
gbp| 0.374| 0734 | 0.684 | 0.999
yo
usd chf eur gbp
usd 1
chf 0.347 1
eur 0.366 | 0.915 1
gbp | 0.363 0.74 | 0.685 1
lu:
usd chf eur gbp
-0.0033 0.028 0.03 0.011
Log likelihood: -10780.55

2. Estimation of model Il (multivariate t-distribution)

)y

usd chf eur gbp
usd | 0.404
chf 0.135| 0.635
eur 0.137 | 0.597 | 0.645
gbp 0.147 | 0.463 | 0.448 0.633
Yo

usd chf eur gbp
usd 1
chf 0.267 1
eur 0.268 | 0.933 1
gbp | 0.292| 0.731 | 0.701 1
/u:

usd chf eur gbp
-0.0172 0.025 0.015 0.024

y 4.114553

Annex V
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Log likelihood: -9987.231

3. Estimation of Model lll

)

usd

chf

eur

gbp

usd

0.9962

chf

0.2988

0.9955

eur

0.3178

0.9103

0.9953

gbp

0.3275

0.7330

0.6814

0.9956

usd

chf

eur

gbp

usd

1.0000

chf

0.3001

1.0000

eur

0.3192

0.9145

1.0000

gbp

0.3289

0.7363

0.6845

1.0000

Log likelihood:

usd

chf

eur

gbp

0.0114

0.0016

0.0017

0.0015

-10756

.55

4. Estimation of Model IV.

2

usd

chf

eur

gbp

usd

2.5954

chf

0.3328

0.7538

eur

0.3293

0.6968

0.7394

gbp

0.3781

0.5599

0.5337

0.7865

usd | chf

Leur [ gbp |

usd

chf

eur

gbp

Log likelihood:

1
0.238

1

0.238 0.933
0.265 0.727

3.231079

1
0.7

usd

chf

eur

gbp

0.0037

0.0109

0.0191

0.0045

-13588.47




5. Estimation of Model V (Normal Copula)

Log likelihood 3409.397

6. Estimation of Model VI (Student-t copula)

v: 5.807568

Log likelihood: 3694.966

7. Estimation of Model VIl (Clayton copula)
Theta: 0.8030917

Log likelihood: 1484.095
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